If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+112=0
a = -16; b = 0; c = +112;
Δ = b2-4ac
Δ = 02-4·(-16)·112
Δ = 7168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7168}=\sqrt{1024*7}=\sqrt{1024}*\sqrt{7}=32\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{7}}{2*-16}=\frac{0-32\sqrt{7}}{-32} =-\frac{32\sqrt{7}}{-32} =-\frac{\sqrt{7}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{7}}{2*-16}=\frac{0+32\sqrt{7}}{-32} =\frac{32\sqrt{7}}{-32} =\frac{\sqrt{7}}{-1} $
| (8x4)x2=8x(4x2) | | 0.07n=56 | | -177=4x+5(-2x-21) | | -4+4x=64 | | 4x+7x=8x-7 | | -9(x+6)-5=-59 | | X-0.2x=25.60 | | (n/8.818)=(11.35/11.023 | | 3n-10+4n=5n+2 | | -145=5x-5(7x-7) | | 28=-5x+2(x+5) | | 9^(x-3)=6 | | 2•0-y=18 | | 20+5*x=1/4*x | | 4-7/x-5=1/x+2 | | 2x(x-6)^2=10 | | 8x-(-8-4x)=16 | | 5=8g | | 4x-4+x=2(2x-3)+12 | | 12=2a | | x/3-7=23 | | 4/5*x=14 | | 13(y-4)-3(y-9)=5(3y+4) | | 6x+3=2x=51 | | 4z-11=9 | | 5(x-1)/6-x=1-x/9 | | 6y+10=(y^2)+3y | | -16=y/4-18 | | 10^7−5x=48 | | 4x-9=4(x-1) | | 107−5x=48 | | 4x−8=6 |